If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X=(1/3)(180-X)
We move all terms to the left:
X-((1/3)(180-X))=0
Domain of the equation: 3)(180-X))!=0We add all the numbers together, and all the variables
X∈R
X-((+1/3)(-1X+180))=0
We multiply parentheses ..
-((-1X^2+1/3*180))+X=0
We multiply all the terms by the denominator
-((-1X^2+1+X*3*180))=0
We calculate terms in parentheses: -((-1X^2+1+X*3*180)), so:We get rid of parentheses
(-1X^2+1+X*3*180)
We get rid of parentheses
-1X^2+X*3*180+1
Wy multiply elements
-1X^2+540X*1+1
Wy multiply elements
-1X^2+540X+1
Back to the equation:
-(-1X^2+540X+1)
1X^2-540X-1=0
We add all the numbers together, and all the variables
X^2-540X-1=0
a = 1; b = -540; c = -1;
Δ = b2-4ac
Δ = -5402-4·1·(-1)
Δ = 291604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{291604}=\sqrt{4*72901}=\sqrt{4}*\sqrt{72901}=2\sqrt{72901}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-540)-2\sqrt{72901}}{2*1}=\frac{540-2\sqrt{72901}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-540)+2\sqrt{72901}}{2*1}=\frac{540+2\sqrt{72901}}{2} $
| 40=9x-15 | | 125x=62 | | 32=12z-26z | | 15-5z=5z-115 | | t/1-3=1 | | 11/18=x/24 | | 4=a/4=2 | | 2b/1+9/5=-11/5 | | -5-34=14-n | | 8x+1=x-10 | | 5x^2+18x-15=0 | | 71-2x=85-3x | | (5x+7)=(8x-71) | | 6x+29+3x+124=360 | | (x-1)+x+(x+1)=126 | | 3x-4+1=-2x-5+4x | | 7m-5=8m | | x=4–1 | | 3x-33=2x+18 | | 11.5=k/45 | | (3x-7)+(5x-21)=180 | | 3(y-2)-(Y-1)=-5(2y+1) | | 2x-4=14. | | (X-2)/3-(2x/7)=-1 | | 2x-x+5x=4 | | 6y-12=30y= | | (X-2)÷3-(2x÷7)=-1 | | z/10+2=7 | | 5z+1=9 | | 3x+3+2x-3x=25 | | 10-5/18n=6+1/6n | | ((X-2)÷3)-(2x÷7)=-1 |