10-5/18n=6+1/6n

Simple and best practice solution for 10-5/18n=6+1/6n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10-5/18n=6+1/6n equation:



10-5/18n=6+1/6n
We move all terms to the left:
10-5/18n-(6+1/6n)=0
Domain of the equation: 18n!=0
n!=0/18
n!=0
n∈R
Domain of the equation: 6n)!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
-5/18n-(1/6n+6)+10=0
We get rid of parentheses
-5/18n-1/6n-6+10=0
We calculate fractions
(-30n)/108n^2+(-18n)/108n^2-6+10=0
We add all the numbers together, and all the variables
(-30n)/108n^2+(-18n)/108n^2+4=0
We multiply all the terms by the denominator
(-30n)+(-18n)+4*108n^2=0
Wy multiply elements
432n^2+(-30n)+(-18n)=0
We get rid of parentheses
432n^2-30n-18n=0
We add all the numbers together, and all the variables
432n^2-48n=0
a = 432; b = -48; c = 0;
Δ = b2-4ac
Δ = -482-4·432·0
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2304}=48$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-48}{2*432}=\frac{0}{864} =0 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+48}{2*432}=\frac{96}{864} =1/9 $

See similar equations:

| ((X-2)÷3)-(2x÷7)=-1 | | 3x+27=2x+24 | | 2+.x/10=2/5 | | 3(4x10)=-18 | | 1.04x=4.16 | | -6(-6x+2)-3x=-4 | | 4x-2=-2+2x | | 335-5x= | | 6x-5+5x+7=180 | | 20=6z-4 | | 6^2x=162 | | 4x-15=48 | | (A-700)x7=057 | | -6x+11+8x-25=-4 | | w-10=28 | | z/2-3/4=-21/4 | | 335-5x=2 | | -10-3D=-4d | | x/6-5/12=1/6 | | -6x+11+8x-24=-4 | | 8(4x-5)=4(8x+1 | | -2w=4w-6 | | (8x)+(11x-36)=180 | | -5/2x-20=20 | | |a|=8 | | 1=3f+1 | | 2(3x-5)-4=2(x-3)+4 | | -2q=-q-2 | | -6-5(8x+2)=-9 | | 2+n/2=2 | | 2^n+3=4.5 | | (x+1)(x+3)=x²+11 |

Equations solver categories