If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2-18X+18=0
We add all the numbers together, and all the variables
X^2-18X+18=0
a = 1; b = -18; c = +18;
Δ = b2-4ac
Δ = -182-4·1·18
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6\sqrt{7}}{2*1}=\frac{18-6\sqrt{7}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6\sqrt{7}}{2*1}=\frac{18+6\sqrt{7}}{2} $
| xx−5=−6x+6 | | (3x+4x)*(3x+4x)=100 | | 64a2=16 | | 6x-7=6()-7=-7= | | 1/3x×4=x-2 | | 2a2=5a+12 | | 2x÷3-x=-5 | | 49b2=9 | | 5x+2-3x=6+x-2 | | 6r-3+43=180 | | 2(4x)=4x-12(x-1) | | 5x+35=3x-17 | | 9c+3-3c=-c-18 | | 5x-2+90+6x+4=180 | | 5x-2+90+6x-4=180 | | 3a/5+a/2=33 | | X/12=e | | 5x-2+6x+4-90=180 | | 84+23-19x2=69 | | 5x-2+6x+4=180 | | 84+23-19x2= | | 6(3z+1)-30=3(2z-4) | | 3+5(3x+8)=148 | | 2x-5(x+3)=-24 | | 3(2y−1)= 9 | | 8(-p-4)=-15p-18 | | 88=p×8 | | F(n)=10^n | | 0.5+0.25t+4=4+0.75t | | 2x+6x+16x+19+2=x | | -0.022x=0.22 | | 2(6x-3)=-102 |