If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49b^2=9
We move all terms to the left:
49b^2-(9)=0
a = 49; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·49·(-9)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42}{2*49}=\frac{-42}{98} =-3/7 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42}{2*49}=\frac{42}{98} =3/7 $
| 5x+2-3x=6+x-2 | | 6r-3+43=180 | | 2(4x)=4x-12(x-1) | | 5x+35=3x-17 | | 9c+3-3c=-c-18 | | 5x-2+90+6x+4=180 | | 5x-2+90+6x-4=180 | | 3a/5+a/2=33 | | X/12=e | | 5x-2+6x+4-90=180 | | 84+23-19x2=69 | | 5x-2+6x+4=180 | | 84+23-19x2= | | 6(3z+1)-30=3(2z-4) | | 3+5(3x+8)=148 | | 2x-5(x+3)=-24 | | 3(2y−1)= 9 | | 8(-p-4)=-15p-18 | | 88=p×8 | | F(n)=10^n | | 0.5+0.25t+4=4+0.75t | | 2x+6x+16x+19+2=x | | -0.022x=0.22 | | 2(6x-3)=-102 | | -243=-9(10+d | | 12x^=16x+3 | | 5=(d+7)/2 | | -3(b+10)=5(b+2) | | 7(3+3x)=234 | | 7^x+1=27 | | 69+25x=350+25x | | 4x+(5000-x)=8000 |