If it's not what You are looking for type in the equation solver your own equation and let us solve it.
84+23-19x^2=69
We move all terms to the left:
84+23-19x^2-(69)=0
We add all the numbers together, and all the variables
-19x^2+38=0
a = -19; b = 0; c = +38;
Δ = b2-4ac
Δ = 02-4·(-19)·38
Δ = 2888
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2888}=\sqrt{1444*2}=\sqrt{1444}*\sqrt{2}=38\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-38\sqrt{2}}{2*-19}=\frac{0-38\sqrt{2}}{-38} =-\frac{38\sqrt{2}}{-38} =-\frac{\sqrt{2}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+38\sqrt{2}}{2*-19}=\frac{0+38\sqrt{2}}{-38} =\frac{38\sqrt{2}}{-38} =\frac{\sqrt{2}}{-1} $
| 5x-2+6x+4=180 | | 84+23-19x2= | | 6(3z+1)-30=3(2z-4) | | 3+5(3x+8)=148 | | 2x-5(x+3)=-24 | | 3(2y−1)= 9 | | 8(-p-4)=-15p-18 | | 88=p×8 | | F(n)=10^n | | 0.5+0.25t+4=4+0.75t | | 2x+6x+16x+19+2=x | | -0.022x=0.22 | | 2(6x-3)=-102 | | -243=-9(10+d | | 12x^=16x+3 | | 5=(d+7)/2 | | -3(b+10)=5(b+2) | | 7(3+3x)=234 | | 7^x+1=27 | | 69+25x=350+25x | | 4x+(5000-x)=8000 | | 9x-11=4(2x+5) | | 4x2+20x=-45 | | -37=y-12 | | 21+m=-22 | | 3x+9=2(x+1) | | 3|4x+3|=21 | | 4m+24=35+m | | -5x+9+16=22 | | 4(6x+9)=56 | | 5(3z-1)/4-7=18 | | 8d+12.1=5d-30.8 |