If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2-13X+6.25=0
We add all the numbers together, and all the variables
X^2-13X+6.25=0
a = 1; b = -13; c = +6.25;
Δ = b2-4ac
Δ = -132-4·1·6.25
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-12}{2*1}=\frac{1}{2} =1/2 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+12}{2*1}=\frac{25}{2} =12+1/2 $
| 16x^2+32x-29=0 | | X^3+6x=5x | | 2x+7=7x=3 | | -6x-2=18-2x | | X+(1/10x)=100 | | 9(n+8)=8•7 | | 3(3x-4)=-39 | | 2x^2−14x+12=0 | | 8(-2p+3)=152 | | x4+x3+x2+x-4=0 | | 2x2−14x+12=0 | | 3x−16=2 | | |3x-1|+4=10 | | -404=-5-7(1+7x) | | 5x-2.4=3.9 | | 5x-2.4=2.4 | | 198=-6(7p+2) | | 9x+4=12x+2 | | 8(7-7x)=448 | | -5(-7p+6)=145 | | X^2+7x+14=x+2 | | 55h+275=440. | | X^2+6x+12=x+2 | | 3x2+x-4=0 | | 2(7-6k)=86 | | 3x2/4=12 | | n÷9+125=132 | | 3x/2+113=179 | | 12x-5=5x-19 | | 15/7=2/x | | -86=2-8(n+4) | | 7(5x+6)-8x=204 |