If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+x-4=0
a = 3; b = 1; c = -4;
Δ = b2-4ac
Δ = 12-4·3·(-4)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-7}{2*3}=\frac{-8}{6} =-1+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+7}{2*3}=\frac{6}{6} =1 $
| 2(7-6k)=86 | | 3x2/4=12 | | n÷9+125=132 | | 3x/2+113=179 | | 12x-5=5x-19 | | 15/7=2/x | | -86=2-8(n+4) | | 7(5x+6)-8x=204 | | 2x+9=24-3x | | 2x+14=54-8x | | 5x+13=33-5x | | 2x+17=42-3x | | 4-7(-6n-7)=389 | | 5x+15=35-5x | | 3x+17=22-2x | | 4*(x-5=-12 | | 4*(x-5=12 | | (D^3-7D-6)y=0 | | (2x+4)×(2x-4)=(4x-2)×(x+3) | | (2x+4)×(2x-4)=(4x-2× | | 2x−9=7 | | 5j^2=3j+4 | | 6x=2x^2+5 | | (2x+45)/5=10 | | 2(n+4)=2n+8 | | 6y^2-30y+37=0 | | -7(-4n-6)=0.5(-16n+12) | | -7(-4n-6)=1/2(-16n+12) | | (x+6)(2x+-1)=0 | | (X+9)(x-11)=×2-(72-7x) | | 48=-16t^2+64t+48 | | n-4(1-n)=-11+4n |