X+(1/10x)=100

Simple and best practice solution for X+(1/10x)=100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X+(1/10x)=100 equation:



X+(1/10X)=100
We move all terms to the left:
X+(1/10X)-(100)=0
Domain of the equation: 10X)!=0
X!=0/1
X!=0
X∈R
We add all the numbers together, and all the variables
X+(+1/10X)-100=0
We get rid of parentheses
X+1/10X-100=0
We multiply all the terms by the denominator
X*10X-100*10X+1=0
Wy multiply elements
10X^2-1000X+1=0
a = 10; b = -1000; c = +1;
Δ = b2-4ac
Δ = -10002-4·10·1
Δ = 999960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{999960}=\sqrt{4*249990}=\sqrt{4}*\sqrt{249990}=2\sqrt{249990}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1000)-2\sqrt{249990}}{2*10}=\frac{1000-2\sqrt{249990}}{20} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1000)+2\sqrt{249990}}{2*10}=\frac{1000+2\sqrt{249990}}{20} $

See similar equations:

| 9(n+8)=8•7 | | 3(3x-4)=-39 | | 2x^2−14x+12=0 | | 8(-2p+3)=152 | | x4+x3+x2+x-4=0 | | 2x2−14x+12=0 | | 3x−16=2 | | |3x-1|+4=10 | | -404=-5-7(1+7x) | | 5x-2.4=3.9 | | 5x-2.4=2.4 | | 198=-6(7p+2) | | 9x+4=12x+2 | | 8(7-7x)=448 | | -5(-7p+6)=145 | | X^2+7x+14=x+2 | | 55h+275=440. | | X^2+6x+12=x+2 | | 3x2+x-4=0 | | 2(7-6k)=86 | | 3x2/4=12 | | n÷9+125=132 | | 3x/2+113=179 | | 12x-5=5x-19 | | 15/7=2/x | | -86=2-8(n+4) | | 7(5x+6)-8x=204 | | 2x+9=24-3x | | 2x+14=54-8x | | 5x+13=33-5x | | 2x+17=42-3x | | 4-7(-6n-7)=389 |

Equations solver categories