X2+4x=15-(-x-6)

Simple and best practice solution for X2+4x=15-(-x-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X2+4x=15-(-x-6) equation:



X2+4X=15-(-X-6)
We move all terms to the left:
X2+4X-(15-(-X-6))=0
We add all the numbers together, and all the variables
X2+4X-(15-(-1X-6))=0
We add all the numbers together, and all the variables
X^2+4X-(15-(-1X-6))=0
We calculate terms in parentheses: -(15-(-1X-6)), so:
15-(-1X-6)
determiningTheFunctionDomain -(-1X-6)+15
We get rid of parentheses
1X+6+15
We add all the numbers together, and all the variables
X+21
Back to the equation:
-(X+21)
We get rid of parentheses
X^2+4X-X-21=0
We add all the numbers together, and all the variables
X^2+3X-21=0
a = 1; b = 3; c = -21;
Δ = b2-4ac
Δ = 32-4·1·(-21)
Δ = 93
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{93}}{2*1}=\frac{-3-\sqrt{93}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{93}}{2*1}=\frac{-3+\sqrt{93}}{2} $

See similar equations:

| 7x-3=14,7x=17 | | 2x-3^2=5 | | (5/6)u+2-u=(1/6)u | | 6-3t=3t-4-8t | | -8m+10=-m-10-9m | | 0.5b-5.17=-4.81+2.3b | | (5/2)-2g=(5/2)-3+g | | -9-4w=-5w | | X4-1=2+x10 | | -8+5t=4+8t | | -9-7n=-6n-2 | | 64-(12×2)+(6÷3)=x | | -46=8(x-8) | | 3j-21+1=10 | | (9/12)x=8 | | 8000/x=1440 | | 0.15x10=0 | | 28=8b+13b−35 | | 3.99+3.99x=4.89+2.99x | | $3.99+$3.99x=$4.89+2.99x | | X²+½x-⅙=0 | | (50x+80(30-x))/30=60 | | x−3=4( | | (2x)-2=38 | | 20y-20=120 | | -4+6х=2(3x-2) | | -4+6х=2(3x—2) | | 215000=10000+10000/x | | 4 | | 4 | | 4 | | w²-9w+12=0 |

Equations solver categories