If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+20X+3=0
We add all the numbers together, and all the variables
X^2+20X+3=0
a = 1; b = 20; c = +3;
Δ = b2-4ac
Δ = 202-4·1·3
Δ = 388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{388}=\sqrt{4*97}=\sqrt{4}*\sqrt{97}=2\sqrt{97}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{97}}{2*1}=\frac{-20-2\sqrt{97}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{97}}{2*1}=\frac{-20+2\sqrt{97}}{2} $
| 55=5(x+3) | | 2x/x^2-25=(10/x^2-25)-(2/x+5) | | 13=-3n+4 | | 2(4x-3)=10x-8 | | 2(4x-3)=10x=8 | | 45=6(x^2+27,000)^1/3-180 | | 4x+10=2x+106 | | -2(5x-3)+3=-10x+9 | | 8*3.14*z=U | | 9·3^9x=(1/9)^2x | | 4z-8=6z-3z | | -4x+2x+5=-6-5x+8 | | 3x+10°=2x° | | -7(x+6)+1=3-5(x-4) | | 0.06x+.03x=7.2 | | O.7x-1.4=-3.5 | | 8x-4=9x-2x | | (7x+4)(2x-3)=0 | | 7x+1=31 | | x²+(7-x)²=25 | | 8y=160 | | 3z+2z=180 | | 2/3(3h)-5/2(h-1)=-1/3(3/2h)+8 | | 28=14−4(3.5−x) | | 23x^2=2(200-x^2 | | 23x^2=2(200-x^2) | | 3x+-5=4x+8 | | H(x)=1-(2x+1) | | 17^-x+8=18^-10x | | H(x)=1-2x+1 | | 8x=22•18 | | (1+3x)(2+x)=-1+7x |