If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X-((1/2)(4X+2))=0
Domain of the equation: 2)(4X+2))!=0We add all the numbers together, and all the variables
X∈R
X-((+1/2)(4X+2))=0
We multiply parentheses ..
-((+4X^2+1/2*2))+X=0
We multiply all the terms by the denominator
-((+4X^2+1+X*2*2))=0
We calculate terms in parentheses: -((+4X^2+1+X*2*2)), so:We get rid of parentheses
(+4X^2+1+X*2*2)
We get rid of parentheses
4X^2+X*2*2+1
Wy multiply elements
4X^2+4X*2+1
Wy multiply elements
4X^2+8X+1
Back to the equation:
-(4X^2+8X+1)
-4X^2-8X-1=0
a = -4; b = -8; c = -1;
Δ = b2-4ac
Δ = -82-4·(-4)·(-1)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{3}}{2*-4}=\frac{8-4\sqrt{3}}{-8} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{3}}{2*-4}=\frac{8+4\sqrt{3}}{-8} $
| 14x+1=10x-19 | | 10−3f=–4f | | c+13=0 | | –9b+5b=–4b | | -2.4=+3.8x-x | | p*16=9 | | –13(q+4)=7q+16 | | -3x-7=-8x-57 | | 4y+-3=63/y= | | 6x+2=5x+3.X= | | 9+|2-5m|=51 | | 9(n+1)=2(n-2) | | C+1c=2c-10 | | -12=3/9x | | t^2+13t-5=0 | | 12f=30 | | Y=3(-1x-1)-2x-1+2 | | X÷2x-10-4=-1 | | 3(v-4)-8v=-7 | | -4x-6=-3x-8 | | 9j-5-13j=2j+9-4j | | (3x)³=216 | | 4(5x+3)=4x+5 | | -10z=-4-8z | | 2x²/5+5x/4=10 | | 0.15w+0.35=0.22w-0.14. | | Y=-1.9x+0.5 | | 4(a-2)=7a+2 | | -29=3(-8+2c)-7c | | -5(5a-3)=-135 | | 3x+52=8x-8 | | -(5a-3)=-135 |