X(2x-1)=x-2(x-2)

Simple and best practice solution for X(2x-1)=x-2(x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X(2x-1)=x-2(x-2) equation:



X(2X-1)=X-2(X-2)
We move all terms to the left:
X(2X-1)-(X-2(X-2))=0
We multiply parentheses
2X^2-1X-(X-2(X-2))=0
We calculate terms in parentheses: -(X-2(X-2)), so:
X-2(X-2)
We multiply parentheses
X-2X+4
We add all the numbers together, and all the variables
-1X+4
Back to the equation:
-(-1X+4)
We get rid of parentheses
2X^2-1X+1X-4=0
We add all the numbers together, and all the variables
2X^2-4=0
a = 2; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·2·(-4)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*2}=\frac{0-4\sqrt{2}}{4} =-\frac{4\sqrt{2}}{4} =-\sqrt{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*2}=\frac{0+4\sqrt{2}}{4} =\frac{4\sqrt{2}}{4} =\sqrt{2} $

See similar equations:

| 12+×=y | | (x-3)(x+4)=x | | 7w+3=5w+7 | | 20x+105=35x | | 8/1​ +c=5/4​ | | 3x-15=2/6 | | 15=-1/8x7 | | (2x+4)(16x-8)=0 | | (3/5m=3/4) | | 15=-5y+2 | | 4w=35-w | | 3(2−4x)=38−20x | | 3x=4x+16 | | 2x+11=8x-1=5x+14 | | x+3=198 | | -8y-12=3y+10 | | -5n-4(1-6n)=148 | | 4+19t-1=8t+71-6t | | 2x+20=6x+4=4x+16 | | 2x+100=400 | | 16/x=15/11 | | 3p=4(1/5) | | w+2.8|=4.3 | | 6x-3(3x-2)=7 | | x-8+3x=4 | | 4(x-7)+5=-23 | | M(x)=(3x-1)(3x-1)+4x^2+19 | | (5w+2)(5+w)=0 | | a+3-3a=13 | | 7^2x=6*7^x-5 | | 2x-7=3x/4+6=-4 | | (13/4)*x=0 |

Equations solver categories