H(t)=-16t2+81t+5

Simple and best practice solution for H(t)=-16t2+81t+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t2+81t+5 equation:



(H)=-16H^2+81H+5
We move all terms to the left:
(H)-(-16H^2+81H+5)=0
We get rid of parentheses
16H^2-81H+H-5=0
We add all the numbers together, and all the variables
16H^2-80H-5=0
a = 16; b = -80; c = -5;
Δ = b2-4ac
Δ = -802-4·16·(-5)
Δ = 6720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6720}=\sqrt{64*105}=\sqrt{64}*\sqrt{105}=8\sqrt{105}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-8\sqrt{105}}{2*16}=\frac{80-8\sqrt{105}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+8\sqrt{105}}{2*16}=\frac{80+8\sqrt{105}}{32} $

See similar equations:

| (x/5=10 | | 5+19x=16x | | z/(-4)=16 | | 6a-15=-45 | | 17-2j=3 | | 3y+96=5y+68 | | 6=12-3g | | F(d)=8d | | 10x-7=9x+1 | | 4x-2(4-3x)=3(x-4)-31 | | -6(t+2)=36 | | -16=r/2+-13 | | X/2=x/9+1/2 | | 3a+30+45=180 | | 2w-18=-4 | | -6-2x=6 | | 4+-2p=-10 | | 3g+8=2 | | 3=4x^2+3 | | 10x+18x-8+3=-2x+3-8 | | -4x^2-20x+24=0 | | -4=f/2-5 | | 1/2(2x-6)+3=8 | | g/1+1=2 | | 2n−n=18 | | -10+2x=-18 | | 190+.15x=307 | | 7-(1/2c)=1/4c-7 | | 55-15=5(x-9) | | 1/2(-x)=2x+10 | | 5r^2-32=148 | | 230+.15x=368 |

Equations solver categories