If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9y^2-144=0
a = 9; b = 0; c = -144;
Δ = b2-4ac
Δ = 02-4·9·(-144)
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72}{2*9}=\frac{-72}{18} =-4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72}{2*9}=\frac{72}{18} =4 $
| 2(3s-7)=22 | | (4)3x-18=2x+1(4) | | x+5/8=−1/4 | | -6+5(8b+2)=-316 | | 4=–s+3 | | -6x-31=5 | | A+3a+2=14 | | 10-5k=-2k-5 | | 9-x/5=x-10 | | 2|6+x|-4=14 | | x+10+20+5x=180 | | -6(x+5)+1=5 | | x+55=98 | | 33x−2=81 | | 43-9x=11+7x | | 14.46=m-7.3-4.2m | | (1)/(9)-(2)/(3)b=(1)/(18) | | 7x+2+10x+8=180 | | 15=2x–7 | | (-12+x)/4=x-1 | | 4t2-196=0 | | 5t-63.75=0 | | 2(p+19)=49 | | 3x+9.5=5.8 | | 5x2+20x+200=0 | | 0.50(8a-20)=2(a+6) | | 2x-3+3x+5=42 | | 3x-1=5x15 | | 10v=6v+32 | | (2.8+x)3.1=2.709 | | 4-2(x-3)=-2-2x | | 15-2x=-8x+5(-7x+3) |