If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2-196=0
a = 4; b = 0; c = -196;
Δ = b2-4ac
Δ = 02-4·4·(-196)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-56}{2*4}=\frac{-56}{8} =-7 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+56}{2*4}=\frac{56}{8} =7 $
| 5t-63.75=0 | | 2(p+19)=49 | | 3x+9.5=5.8 | | 5x2+20x+200=0 | | 0.50(8a-20)=2(a+6) | | 2x-3+3x+5=42 | | 3x-1=5x15 | | 10v=6v+32 | | (2.8+x)3.1=2.709 | | 4-2(x-3)=-2-2x | | 15-2x=-8x+5(-7x+3) | | 2x-7+2x=37 | | -19=32-8x-2x-1 | | 2x=3+34 | | -3x2-5x+2=0 | | 12-4n=8+n-6n | | 3x+25+8x-84=180 | | -3(-4u+9)-u=7(u-6)-3 | | 4x-10=5x+40 | | 18x+14=12x+32 | | 4.75+0.75x=3.25-0.50 | | -3/5y=0,8 | | 8r+111=90 | | 10=z^−2+7 | | 3/4(8m-12)=6(4+3m) | | 15x-80=12x-20 | | 2w+20=5 | | 2r+49=90 | | x-(x-10)+11=12x+3(-2x+1(3)) | | 11x-6=21x-6 | | 140+.50d=80+.70d | | 14-2k=3k-1 |