If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-20x=0
a = 9; b = -20; c = 0;
Δ = b2-4ac
Δ = -202-4·9·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20}{2*9}=\frac{0}{18} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20}{2*9}=\frac{40}{18} =2+2/9 $
| 13-y=290 | | (X+6)x(x-3)=9x(x-1) | | 8p;=9 | | 144=190-v | | -8(b-7)=120 | | 6x-28=-2x+4 | | -9=-6+r/3 | | 11+d=15 | | 286=-y+63 | | 3x+5=21x-15 | | x/10=4=6 | | -2c=2c | | 5x2+1=0 | | (U-6)x2=10 | | Y+6=10x | | (U-10)x9=90 | | 5p–1=2p+20 | | 5x=-10. | | 2k+5=-17 | | 31=11+5k | | -2x=8. | | 6(10-2x)=120 | | -x+3=6. | | 6m+2-4m=2(m-+2) | | 5(x+7)=-45 | | 2(a+5)=17 | | 57+c=32 | | X=8k-2 | | x-(-15)=4 | | x−5.2=−18.73x−5.2=−18.73 | | (Q-6)x2=10 | | 8m+15=21 |