If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+9x=180
We move all terms to the left:
9x^2+9x-(180)=0
a = 9; b = 9; c = -180;
Δ = b2-4ac
Δ = 92-4·9·(-180)
Δ = 6561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6561}=81$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-81}{2*9}=\frac{-90}{18} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+81}{2*9}=\frac{72}{18} =4 $
| (8x+14)(12x-50)=180 | | -24=-0.8z | | 9(-7-6m)=3m | | 7x-7=6x-16 | | 12x-50=180 | | -24=0.8z | | -7/3=21/p | | 40+100=15x | | 12x-50=90 | | -1/95=2.7n-3n | | 3.4n=18.7 | | -24=1.5x | | X=5+2b | | 40x+12=140 | | -9(x+60=-207 | | 8(x+5.57)=16(3x+1.50) | | 98p^2+2=0 | | 12m+6=3(4m+2) | | -18x+2(9x+6.25)=12.5 | | X+4x+6=51 | | 7(y-3)+5=6+2(y+4) | | –6−8p=4−7p | | (6x/4)+3x=16 | | -4+q/7=-3 | | x^2=1x+2 | | 15-s=15 | | -2x-22=20 | | -8h=112 | | 3(n+1)=3(n+1)+n | | (7x-20)+(4x+16)=180 | | 2x+(3x−4)=-1x-4 | | 151=(20x-3)+(11x-1) |