If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x(x-4)-7x=5(3x-2)
We move all terms to the left:
9x(x-4)-7x-(5(3x-2))=0
We add all the numbers together, and all the variables
-7x+9x(x-4)-(5(3x-2))=0
We multiply parentheses
9x^2-7x-36x-(5(3x-2))=0
We calculate terms in parentheses: -(5(3x-2)), so:We add all the numbers together, and all the variables
5(3x-2)
We multiply parentheses
15x-10
Back to the equation:
-(15x-10)
9x^2-43x-(15x-10)=0
We get rid of parentheses
9x^2-43x-15x+10=0
We add all the numbers together, and all the variables
9x^2-58x+10=0
a = 9; b = -58; c = +10;
Δ = b2-4ac
Δ = -582-4·9·10
Δ = 3004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3004}=\sqrt{4*751}=\sqrt{4}*\sqrt{751}=2\sqrt{751}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-58)-2\sqrt{751}}{2*9}=\frac{58-2\sqrt{751}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-58)+2\sqrt{751}}{2*9}=\frac{58+2\sqrt{751}}{18} $
| 11x-26=56 | | -280=-7(8m+1)+7 | | 7x-8=28-2x | | x-x+2=2x+2-x | | 47=-2-7x* | | 85=(4x-15)+(2x+10) | | 5(x+4)+3x–10=16x–2(7x–3) | | 10=2(y-4) | | 2(x-4)=6x=2-3x | | 6(−4−5x)=−234 | | 88+8y=180 | | 2/5x-43=97 | | 3(60)+3=x | | 20-3y=2y-5 | | 1/3(x^2+3)=1 | | 20x+9=16x+45 | | -1=-2/z | | x/6-25=1 | | 4(a-5)+3a=2a+10 | | -2(n-12+1=2n+25 | | 2(x-4)=6x+2-3x | | x−4=−2+2x | | 72+1.5x=62+2x | | 3x+6=4x+4+2 | | 5(x+16)=60 | | 1/4(24x+36)=2x | | 7h=7+8h | | 3=-6/n | | 3x+36=15x | | 7c-(3c+4)=-2(2c-1)+10 | | 5(n+80)=140 | | ||x+7|-18|=6 |