If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9k^2=23+10k
We move all terms to the left:
9k^2-(23+10k)=0
We add all the numbers together, and all the variables
9k^2-(10k+23)=0
We get rid of parentheses
9k^2-10k-23=0
a = 9; b = -10; c = -23;
Δ = b2-4ac
Δ = -102-4·9·(-23)
Δ = 928
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{928}=\sqrt{16*58}=\sqrt{16}*\sqrt{58}=4\sqrt{58}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4\sqrt{58}}{2*9}=\frac{10-4\sqrt{58}}{18} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4\sqrt{58}}{2*9}=\frac{10+4\sqrt{58}}{18} $
| 3(2z-10)=-10 | | -2v2-8v=-64 | | Y=0.17x+8 | | -3b2+b=30 | | 114=-7-7(5x+8) | | 3x-6=3+6x | | 5x+8=-9x-12 | | 4+16x=7+13x | | -3/4+p=11/4 | | n/3-48=-41 | | 3x-+2=-29 | | 27=s/8+21 | | 2d+-10=-18 | | 2d+-10=-1 | | 13x+6x+9=4x=16-12 | | 93=q/3+20 | | 13x-6x+8=6x+2-4 | | 13x-6x+8=6x+-4 | | 23=q/3+20 | | 23=q/3+2 | | 8/30=x/100 | | 8=y/2+5 | | 8x−13(12x+3)=0 | | 9x-x-3=2x+8+7 | | 30/8=x/100 | | 4a2=-8+129 | | w/3+3=4 | | 8/30=x/50 | | 3x+2-6x=8+3x+6 | | .5z+6=1.5{z+6} | | 30/8=50/x | | r8–1=1 |