If it's not what You are looking for type in the equation solver your own equation and let us solve it.
975=n(195-5n)
We move all terms to the left:
975-(n(195-5n))=0
We add all the numbers together, and all the variables
-(n(-5n+195))+975=0
We calculate terms in parentheses: -(n(-5n+195)), so:We get rid of parentheses
n(-5n+195)
We multiply parentheses
-5n^2+195n
Back to the equation:
-(-5n^2+195n)
5n^2-195n+975=0
a = 5; b = -195; c = +975;
Δ = b2-4ac
Δ = -1952-4·5·975
Δ = 18525
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18525}=\sqrt{25*741}=\sqrt{25}*\sqrt{741}=5\sqrt{741}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-195)-5\sqrt{741}}{2*5}=\frac{195-5\sqrt{741}}{10} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-195)+5\sqrt{741}}{2*5}=\frac{195+5\sqrt{741}}{10} $
| 975=n*(195n-5n) | | 16x-3x+7-4x+4x-3=0 | | 4(3x-8)-(2x-7)=0 | | 3(5x-1)-5x=10x-3 | | 8x^2-3x+7-2x^2+4x-3=0 | | 3(4x-1)+5=2(6x-1) | | 16=10w | | 2m+5=2m-4 | | 86x+4=90 | | 3/5(15c+10)=120-9 | | 3x+34+6x+7=90 | | 3x+34+6x+7=180 | | 2x^2+1=3x^2-80 | | 2(x-1)+3x-1=180 | | 2(x-1)+3x-1=90 | | 12+x/25-x=0.6 | | 9(7x-2)+5=61+8x | | .03x-31=11 | | 5x-17=22 | | 1000x1.00=5x5 | | 60c=126 | | 64x^-1=0 | | 4^5x-13=1/8x | | 4(2z-3)=2(z+3)-3(2+1) | | (2n-3)=(2n+5) | | (2n+3)=(2n+5) | | 3(6-x)=14 | | H(-1)=2x-5 | | 3x^2-153=0 | | 4.07(-18+8e)=-18 | | 3x^2+18=x^2 | | 6h-2h+12=10h |