975=n*(195n-5n)

Simple and best practice solution for 975=n*(195n-5n) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 975=n*(195n-5n) equation:



975=n(195n-5n)
We move all terms to the left:
975-(n(195n-5n))=0
We add all the numbers together, and all the variables
-(n(+190n))+975=0
We calculate terms in parentheses: -(n(+190n)), so:
n(+190n)
We multiply parentheses
190n^2
Back to the equation:
-(190n^2)
a = -190; b = 0; c = +975;
Δ = b2-4ac
Δ = 02-4·(-190)·975
Δ = 741000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{741000}=\sqrt{100*7410}=\sqrt{100}*\sqrt{7410}=10\sqrt{7410}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{7410}}{2*-190}=\frac{0-10\sqrt{7410}}{-380} =-\frac{10\sqrt{7410}}{-380} =-\frac{\sqrt{7410}}{-38} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{7410}}{2*-190}=\frac{0+10\sqrt{7410}}{-380} =\frac{10\sqrt{7410}}{-380} =\frac{\sqrt{7410}}{-38} $

See similar equations:

| 16x-3x+7-4x+4x-3=0 | | 4(3x-8)-(2x-7)=0 | | 3(5x-1)-5x=10x-3 | | 8x^2-3x+7-2x^2+4x-3=0 | | 3(4x-1)+5=2(6x-1) | | 16=10w | | 2m+5=2m-4 | | 86x+4=90 | | 3/5(15c+10)=120-9 | | 3x+34+6x+7=90 | | 3x+34+6x+7=180 | | 2x^2+1=3x^2-80 | | 2(x-1)+3x-1=180 | | 2(x-1)+3x-1=90 | | 12+x/25-x=0.6 | | 9(7x-2)+5=61+8x | | .03x-31=11 | | 5x-17=22 | | 1000x1.00=5x5 | | 60c=126 | | 64x^-1=0 | | 4^5x-13=1/8x | | 4(2z-3)=2(z+3)-3(2+1) | | (2n-3)=(2n+5) | | (2n+3)=(2n+5) | | 3(6-x)=14 | | H(-1)=2x-5 | | 3x^2-153=0 | | 4.07(-18+8e)=-18 | | 3x^2+18=x^2 | | 6h-2h+12=10h | | x3=125/216 |

Equations solver categories