If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9/10u-1/3=4/25u+4
We move all terms to the left:
9/10u-1/3-(4/25u+4)=0
Domain of the equation: 10u!=0
u!=0/10
u!=0
u∈R
Domain of the equation: 25u+4)!=0We get rid of parentheses
u∈R
9/10u-4/25u-4-1/3=0
We calculate fractions
(-500u^2)/2250u^2+2025u/2250u^2+(-360u)/2250u^2-4=0
We multiply all the terms by the denominator
(-500u^2)+2025u+(-360u)-4*2250u^2=0
Wy multiply elements
(-500u^2)-9000u^2+2025u+(-360u)=0
We get rid of parentheses
-500u^2-9000u^2+2025u-360u=0
We add all the numbers together, and all the variables
-9500u^2+1665u=0
a = -9500; b = 1665; c = 0;
Δ = b2-4ac
Δ = 16652-4·(-9500)·0
Δ = 2772225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2772225}=1665$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1665)-1665}{2*-9500}=\frac{-3330}{-19000} =333/1900 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1665)+1665}{2*-9500}=\frac{0}{-19000} =0 $
| 9.3=5.5w-7.2 | | 5(n-3)-2=-33-(n+2) | | 15t^2+5t=84 | | 55=22^x | | x/0.4=30 | | -18+20x=20x-18 | | (7x-3)+(3x+11)=80 | | (3x-5)+(3x-5)=(x+2) | | -7x=30+3x | | (v-1)^2-44=0 | | (2x+1)+(3x+9)=(6x+8) | | 9x²+24x+16=0 | | 56r+32=-136 | | 6(x–4)–(x+13)=4(7x+8) | | -136=8(7r-4) | | 9+x-2x/2=4+x/4 | | 1.1x^2-20x+50=0 | | -12+k=19 | | x/9+3+x/4=7 | | 2^x=1250 | | -2(3m=9) | | x-(x×0.05)=300000 | | 4r²-100=0 | | 3/4+2=(8a+1) | | 7/3v-2=-2/3v-3/5 | | d-4+d=8d-(-12) | | 12p+3p=15p | | 5(x-2)=5(4x+1) | | 7r+2=49r | | 2/3x+25=105 | | |2x+7|=12 | | 8/5=56=x |