9(x+10)=3x(x+6)

Simple and best practice solution for 9(x+10)=3x(x+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9(x+10)=3x(x+6) equation:



9(x+10)=3x(x+6)
We move all terms to the left:
9(x+10)-(3x(x+6))=0
We multiply parentheses
9x-(3x(x+6))+90=0
We calculate terms in parentheses: -(3x(x+6)), so:
3x(x+6)
We multiply parentheses
3x^2+18x
Back to the equation:
-(3x^2+18x)
We get rid of parentheses
-3x^2+9x-18x+90=0
We add all the numbers together, and all the variables
-3x^2-9x+90=0
a = -3; b = -9; c = +90;
Δ = b2-4ac
Δ = -92-4·(-3)·90
Δ = 1161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1161}=\sqrt{9*129}=\sqrt{9}*\sqrt{129}=3\sqrt{129}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-3\sqrt{129}}{2*-3}=\frac{9-3\sqrt{129}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+3\sqrt{129}}{2*-3}=\frac{9+3\sqrt{129}}{-6} $

See similar equations:

| (3x+1)^2=4 | | 206-6m=140 | | (12t+24)=t+ | | 40/x-2=30/x | | 8a-7a=2 | | 4(x-2)=50 | | 9x-7=6x+4(5-4) | | 0=4+b/5 | | 4x-1+5x-8=180 | | -3(-7v+4)-2v=4(v-5)-4 | | (8)/(9)(3i+27)=(2)/(9)i+68 | | 2-4x=8x-10 | | -24/x+4=-8/x | | 2x-6x+8=x-5+13 | | -x+7-3x=23 | | 7(v+3)=-2(3v-3)+4v | | -9/x=-15/x+2 | | (7x-5)=(9x-7) | | Z²+z+25=0 | | N(17+r)=34r-r | | 12-10x5x=18 | | -5(w+1)=w-9+2(2w+6) | | b(9+b)=0 | | 12-10x5x=-18 | | b(9-b)=0 | | (6x+3)/5=2x-5 | | 12x-8+104=108 | | 75x^2-766x+80=0 | | 7/10x+3=-10/7x+20 | | -6(-3u+3)-6u=3(u-2)-9 | | -19=m+6 | | 9g+4=2 |

Equations solver categories