If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x(3x-3)=43
We move all terms to the left:
8x(3x-3)-(43)=0
We multiply parentheses
24x^2-24x-43=0
a = 24; b = -24; c = -43;
Δ = b2-4ac
Δ = -242-4·24·(-43)
Δ = 4704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4704}=\sqrt{784*6}=\sqrt{784}*\sqrt{6}=28\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-28\sqrt{6}}{2*24}=\frac{24-28\sqrt{6}}{48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+28\sqrt{6}}{2*24}=\frac{24+28\sqrt{6}}{48} $
| 2x-5-4x=-13 | | 216=24x | | -6+5+x=9 | | (5x+2)(3x+7)=0 | | 3+34p=157 | | 2x+9x-10=0 | | 3t-2t+5=9 | | -2-5x=8 | | 1/3(k)=9 | | 1/2p-3/5=3+1/5p | | 44=14/3x | | 6x+9=144 | | 44=24/3x | | -1/5d-2=12 | | 6/5+1/3t=6 | | 15/8=20/7x+6 | | 1/3y+5=16 | | 2(1-7r)=-26 | | 7b+2b-5=22 | | 7k^2+58k+16=0 | | 4x=2(1/2×)+2(×+5) | | 6=5+y | | |x+7|+10=6 | | 3n^2-21=4-n^2 | | .15(x)=5 | | 180=18x | | 72t+76t=330 | | ×+0.06x=19,080 | | 7x+7=7(x-7) | | -a=-2a+5 | | 4(x+2)-1=4x+11 | | 72t+60t=330 |