If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81x^2+99x+28=0
a = 81; b = 99; c = +28;
Δ = b2-4ac
Δ = 992-4·81·28
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(99)-27}{2*81}=\frac{-126}{162} =-7/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(99)+27}{2*81}=\frac{-72}{162} =-4/9 $
| 5x-6+8x-21=90 | | 32/3-x=11/18 | | -14q=504 | | 3(3w+9)/2=6 | | (13p-14)*0.5=6p+12 | | 6+3(4u-3)=-2(6u-3)+6u | | 2x+126+2x+126=180 | | 1(x)=X2+4x-1 | | -14.91=3n+-2.91 | | -200=2d | | 4(4x+1)=5x-1+x | | .310(y+2)=12 | | 3m-8=4+2m | | 2x(19)-5=3x(19)-24 | | -1(x)=X2+4x-1 | | |x|=1x= | | (1.5x+23)=(2x) | | 134=g+668 | | 8(x)=X2+4x-1 | | b/3-17=-15 | | 10x+1-4x=25 | | 2x+126+2x+126+70=180 | | s-637=151 | | 5q=6.25 | | -4(x)=X2+4x-1 | | 3.4(-2j+4)=2 | | 7x+55=2x+7+9x | | 13p-14=(6p+12)2 | | 3x-25=x+17,x= | | 2y-1=78 | | 2x+6-2=5 | | -4(2x-5)+2x=6(x+2) |