If it's not what You are looking for type in the equation solver your own equation and let us solve it.
810=((760/y-1)+14)(y-5)
We move all terms to the left:
810-(((760/y-1)+14)(y-5))=0
Domain of the equation: y-1)+14)(y-5))!=0We multiply all the terms by the denominator
y∈R
-(((760+810*y-1)+14)(y-5))=0
We calculate terms in parentheses: -(((760+810*y-1)+14)(y-5)), so:We get rid of parentheses
((760+810*y-1)+14)(y-5)
We add all the numbers together, and all the variables
((810y+759)+14)(y-5)
We calculate terms in parentheses: +((810y+759)+14)(y-5), so:We multiply parentheses ..
(810y+759)+14)(y-5
We get rid of parentheses
810y+14)(y+759-5
We add all the numbers together, and all the variables
810y+14)(y+754
Back to the equation:
+(810y+14)(y+754)
(+810y^2+610740y+14y+10556)
We get rid of parentheses
810y^2+610740y+14y+10556
We add all the numbers together, and all the variables
810y^2+610754y+10556
Back to the equation:
-(810y^2+610754y+10556)
-810y^2-610754y-10556=0
a = -810; b = -610754; c = -10556;
Δ = b2-4ac
Δ = -6107542-4·(-810)·(-10556)
Δ = 372986247076
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{372986247076}=610726$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-610754)-610726}{2*-810}=\frac{28}{-1620} =-7/405 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-610754)+610726}{2*-810}=\frac{1221480}{-1620} =-754 $
| 7x+35/7=-42 | | 7x+35/7=-43 | | 25=(5*h)/2 | | 52=4+6n | | 2(-10+r)=-8 | | -4+4y=6 | | 3x+2=2,5x+4 | | 7x2-36x-12=0 | | 45x+32x=308÷x | | 7x0=1 | | 7y+y^2=4544 | | X^2-30x+161=0 | | x2+3x=45 | | x2+15x-54=0 | | 3x+2x+36=180 | | 12=12+v8/2 | | X²+12x-18000=0 | | 3t÷4=6 | | n4=5 | | X^2-8x+6.25=0 | | 6=12-3f | | 1=10-3z | | 7(3x-1)-6(2x+3)=8(x-2)+2 | | 17=8+-3f | | 7=-1-2n | | 4x+48=6x+48 | | 5=-11+2h | | 3+2k=-5 | | 2r-1=7 | | -3k+5=11 | | 2x+24+5x-12=180 | | 4u+-13=-17 |