If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-36x-12=0
a = 7; b = -36; c = -12;
Δ = b2-4ac
Δ = -362-4·7·(-12)
Δ = 1632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1632}=\sqrt{16*102}=\sqrt{16}*\sqrt{102}=4\sqrt{102}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-4\sqrt{102}}{2*7}=\frac{36-4\sqrt{102}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+4\sqrt{102}}{2*7}=\frac{36+4\sqrt{102}}{14} $
| 45x+32x=308÷x | | 7x0=1 | | 7y+y^2=4544 | | X^2-30x+161=0 | | x2+3x=45 | | x2+15x-54=0 | | 3x+2x+36=180 | | 12=12+v8/2 | | X²+12x-18000=0 | | 3t÷4=6 | | n4=5 | | X^2-8x+6.25=0 | | 6=12-3f | | 1=10-3z | | 7(3x-1)-6(2x+3)=8(x-2)+2 | | 17=8+-3f | | 7=-1-2n | | 4x+48=6x+48 | | 5=-11+2h | | 3+2k=-5 | | 2r-1=7 | | -3k+5=11 | | 2x+24+5x-12=180 | | 4u+-13=-17 | | -2f+-6=-2 | | 6+-2n=20 | | 3h-14=-2 | | 5x=-12.5 | | 2x+9x+3=14 | | 13.8-5x=1.3 | | 7x-10+2x=10-(x+20) | | X+2/3-(x+1)=(x-3) |