If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8+x2=41
We move all terms to the left:
8+x2-(41)=0
We add all the numbers together, and all the variables
x^2-33=0
a = 1; b = 0; c = -33;
Δ = b2-4ac
Δ = 02-4·1·(-33)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{33}}{2*1}=\frac{0-2\sqrt{33}}{2} =-\frac{2\sqrt{33}}{2} =-\sqrt{33} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{33}}{2*1}=\frac{0+2\sqrt{33}}{2} =\frac{2\sqrt{33}}{2} =\sqrt{33} $
| 8+x×2=41 | | (2x+5)×(5x+5)-10x2=305 | | 4²+x²=41 | | -2k+(-2-2k)=-4 | | 2x+5=54−9/4 | | 52x+6=210 | | 16z+1=17 | | 3xX=76 | | -c/3=-12 | | -(1.5-0.5n)+n=0 | | 3+2/(x-4)=17 | | 3x2-153=9 | | X2+X+53=4—13x | | 20t+t²=96 | | 6/2=9/x-5 | | 2x5=2048 | | 5(y+9)=2(y+5) | | 3x²-153=9 | | 5+x*2=41 | | x+x+2+x-5=123 | | -2(2m=7)=-28-6m | | 10+2(y+15)=20 | | 2(5x+1)=24 | | 10+2y+15=20 | | (11y/29y)+y=44 | | (11/29y)+y=44 | | (11/29)+y=44 | | 11x2-55x+5=0 | | 11x-55x+5=0 | | 2x5=2024 | | 44/x=116 | | 20+15x=10x+35. |