If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-153=9
We move all terms to the left:
3x^2-153-(9)=0
We add all the numbers together, and all the variables
3x^2-162=0
a = 3; b = 0; c = -162;
Δ = b2-4ac
Δ = 02-4·3·(-162)
Δ = 1944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1944}=\sqrt{324*6}=\sqrt{324}*\sqrt{6}=18\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{6}}{2*3}=\frac{0-18\sqrt{6}}{6} =-\frac{18\sqrt{6}}{6} =-3\sqrt{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{6}}{2*3}=\frac{0+18\sqrt{6}}{6} =\frac{18\sqrt{6}}{6} =3\sqrt{6} $
| X2+X+53=4—13x | | 20t+t²=96 | | 6/2=9/x-5 | | 2x5=2048 | | 5(y+9)=2(y+5) | | 3x²-153=9 | | 5+x*2=41 | | x+x+2+x-5=123 | | -2(2m=7)=-28-6m | | 10+2(y+15)=20 | | 2(5x+1)=24 | | 10+2y+15=20 | | (11y/29y)+y=44 | | (11/29y)+y=44 | | (11/29)+y=44 | | 11x2-55x+5=0 | | 11x-55x+5=0 | | 2x5=2024 | | 44/x=116 | | 20+15x=10x+35. | | 116/x=44 | | 656,92=0,2y+y | | 2,4x^2=0 | | 600=0,2+x | | 1. 3x–6=27 | | 9(m-8)=7(2m+1)=3 | | 9x=8x–6–x | | 4x3+8x2-20x-24=0 | | 3t+5/2=16 | | (3y+2)4=68 | | 72=x*15 | | 4^x-(7*2^x)=8 |