(11/29y)+y=44

Simple and best practice solution for (11/29y)+y=44 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (11/29y)+y=44 equation:



(11/29y)+y=44
We move all terms to the left:
(11/29y)+y-(44)=0
Domain of the equation: 29y)!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
(+11/29y)+y-44=0
We add all the numbers together, and all the variables
y+(+11/29y)-44=0
We get rid of parentheses
y+11/29y-44=0
We multiply all the terms by the denominator
y*29y-44*29y+11=0
Wy multiply elements
29y^2-1276y+11=0
a = 29; b = -1276; c = +11;
Δ = b2-4ac
Δ = -12762-4·29·11
Δ = 1626900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1626900}=\sqrt{100*16269}=\sqrt{100}*\sqrt{16269}=10\sqrt{16269}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1276)-10\sqrt{16269}}{2*29}=\frac{1276-10\sqrt{16269}}{58} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1276)+10\sqrt{16269}}{2*29}=\frac{1276+10\sqrt{16269}}{58} $

See similar equations:

| (11/29)+y=44 | | 11x2-55x+5=0 | | 11x-55x+5=0 | | 2x5=2024 | | 44/x=116 | | 20+15x=10x+35. | | 116/x=44 | | 656,92=0,2y+y | | 2,4x^2=0 | | 600=0,2+x | | 1. 3x–6=27 | | 9(m-8)=7(2m+1)=3 | | 9x=8x–6–x | | 4x3+8x2-20x-24=0 | | 3t+5/2=16 | | (3y+2)4=68 | | 72=x*15 | | 4^x-(7*2^x)=8 | | 16x–19x= | | 2x/3-x/2=39 | | 23000x=1000000 | | 2x+38+(x+4)=180 | | 23000x=400000 | | 1/3x-10=-2 | | 8+7(x-1)=20 | | 3000*x=400000 | | n+4-6=82 | | x^2-34x+58=0 | | 9d+2d+9d=20d | | 14+a=5a | | 5y+8(2y-9)=12 | | 2m+7=3m+8 |

Equations solver categories