If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-160=5x^2+160
We move all terms to the left:
7x^2-160-(5x^2+160)=0
We get rid of parentheses
7x^2-5x^2-160-160=0
We add all the numbers together, and all the variables
2x^2-320=0
a = 2; b = 0; c = -320;
Δ = b2-4ac
Δ = 02-4·2·(-320)
Δ = 2560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2560}=\sqrt{256*10}=\sqrt{256}*\sqrt{10}=16\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{10}}{2*2}=\frac{0-16\sqrt{10}}{4} =-\frac{16\sqrt{10}}{4} =-4\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{10}}{2*2}=\frac{0+16\sqrt{10}}{4} =\frac{16\sqrt{10}}{4} =4\sqrt{10} $
| X(2y-3)=15 | | 3=60-3y-9 | | 2.x-7.8=-6.6 | | -5.4s-5.31+6.4s=11.6s-14.85 | | 5=1.2^x | | 20+m=420 | | 17=60-3y-9 | | -5.4s−5.31+6.4s=11.6s−14.85 | | 60+2x=80 | | 15-8q=-11q-14-4 | | 5=1.2x | | y/15=60/100 | | 15−8q=-11q−14−4 | | .5x=94 | | z-27=63 | | x+10=109 | | -19-5n=20+8n | | -19−5n=20+8n | | 4d-4=5d-78 | | 14d=17+13d | | 7(6x-5)=133 | | 10u+10+5u=-5u-10 | | 8x+21=-11 | | 6(3y+2)=1 | | 0.06xX=112 | | 4x+23=2x+41 | | j+4-8j=-4j+10 | | A/(a-5)=9 | | 8x2+40x-2500=0 | | X=7w2+4w−6Y=w2−11w+13 X+Y=X+Y= | | 39-19=x | | 3z+3=4z+8 |