If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7r^2+42r=0
a = 7; b = 42; c = 0;
Δ = b2-4ac
Δ = 422-4·7·0
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-42}{2*7}=\frac{-84}{14} =-6 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+42}{2*7}=\frac{0}{14} =0 $
| 10u=10000 | | 2(v-3)-6v=-2 | | 3m2-8m-16=0 | | (7t-2)-(3t+1)=-3(1-3t) | | 2x-7(3x+4(=2x-49 | | x+x(3/100)=1451 | | 18=-2/3w | | -7=2+3w | | 5c2-32c+12=0 | | -7=2=3w | | 3x-82=87 | | -2+5w=-32 | | t2-6t-27=0 | | (2x+1)^2=10x-1 | | b2-12b+32=0 | | -8x+3(x+2)=-34 | | 11-3x=2x | | 8y-5y=10-y | | X+.5x=4 | | 11x-3x+93=11x+42 | | 12.25+2x=35.25 | | -4(2=4n)=88 | | 2x+(3x+2)-(1x+5)=37 | | 2x+(3x+2)-(1x+5)=36 | | 2x+(3x+2)-(1x+5)=35 | | 2x+(3x+2)-(1x+5)=34 | | 251/4+2x=351/4 | | 8(w-2)+2w=14 | | 2x-4+5x=-25 | | 64-5v=3v | | -2x-9=x-29 | | x4+3=10 |