If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7p^2+63p+126=0
a = 7; b = 63; c = +126;
Δ = b2-4ac
Δ = 632-4·7·126
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-21}{2*7}=\frac{-84}{14} =-6 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+21}{2*7}=\frac{-42}{14} =-3 $
| 2x+17=3x-19 | | 3x2-1-x=x(3x+1)+5 | | 4(3x+8)-9=2(4x-8)+39 | | 3=w^2-w | | 19x+5=-4x-20 | | 48=x2+x+(x+8) | | 7(x-2)=(5x+4) | | 14−7y=21 | | -7a+9=3a-49 | | -6=5x-22÷-3 | | -4+x+5=-11+2 | | A=3/(m–7) | | 52=4-3(-4+4x) | | 12=12+(v-8)/12 | | 8x-4=-1/2(12-16x) | | 3x+8)-10=2(6x-8)+39 | | y-4.6=12, | | .95c=12+.89c | | -4(1-4x)-4x=-64 | | -2x-4x+7=-29 | | 2x+4(1/5)=9 | | 95=(12x25)+6x | | x^2-13x-12=42 | | 3x+26=7 | | 4(3x+x)+7-5x=8+(x5)(5x-6x)+23 | | 11x8=88 | | -4(1-4)-4x=-64 | | 6-2x=3x^2 | | X+x3=64 | | 3(x+2)=-34-5x | | –10b=–8−9b | | 16x-6=4x+66 |