48=x2+x+(x+8)

Simple and best practice solution for 48=x2+x+(x+8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 48=x2+x+(x+8) equation:



48=x2+x+(x+8)
We move all terms to the left:
48-(x2+x+(x+8))=0
We calculate terms in parentheses: -(x2+x+(x+8)), so:
x2+x+(x+8)
We add all the numbers together, and all the variables
x^2+x+(x+8)
We get rid of parentheses
x^2+x+x+8
We add all the numbers together, and all the variables
x^2+2x+8
Back to the equation:
-(x^2+2x+8)
We get rid of parentheses
-x^2-2x-8+48=0
We add all the numbers together, and all the variables
-1x^2-2x+40=0
a = -1; b = -2; c = +40;
Δ = b2-4ac
Δ = -22-4·(-1)·40
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{41}}{2*-1}=\frac{2-2\sqrt{41}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{41}}{2*-1}=\frac{2+2\sqrt{41}}{-2} $

See similar equations:

| 7(x-2)=(5x+4) | | 14−7y=21 | | -7a+9=3a-49 | | -6=5x-22÷-3 | | -4+x+5=-11+2 | | A=3/(m–7) | | 52=4-3(-4+4x) | | 12=12+(v-8)/12 | | 8x-4=-1/2(12-16x) | | 3x+8)-10=2(6x-8)+39 | | y-4.6=12, | | .95c=12+.89c | | -4(1-4x)-4x=-64 | | -2x-4x+7=-29 | | 2x+4(1/5)=9 | | 95=(12x25)+6x | | x^2-13x-12=42 | | 3x+26=7 | | 4(3x+x)+7-5x=8+(x5)(5x-6x)+23 | | 11x8=88 | | -4(1-4)-4x=-64 | | 6-2x=3x^2 | | X+x3=64 | | 3(x+2)=-34-5x | | –10b=–8−9b | | 16x-6=4x+66 | | D/12+25=17p-29 | | 7x/45=3 | | 15x2=5x | | 5x-2(2x-5)=9 | | 0z-30-4z=6(z-5) | | 3(2x=8)=60 |

Equations solver categories