If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7c^2-36c+5=0
a = 7; b = -36; c = +5;
Δ = b2-4ac
Δ = -362-4·7·5
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1156}=34$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-34}{2*7}=\frac{2}{14} =1/7 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+34}{2*7}=\frac{70}{14} =5 $
| 3^-x=3.5 | | x-3/5x-2/3*2/5x=39 | | -4x-28=-6x+12 | | 2m-11m2=0 | | 4y+7+10y-37=y | | 36=w^2+3w | | 9d-d2=0 | | 13t-1=90 | | 6t^2-3t-6=0 | | 0.3+0.7/x=0.85 | | 5m^2-8m-6=0 | | n-2/9=1/3 | | n+24-19=57 | | 4x-5=-5-4x | | (12/5)x=(3/5) | | 3(1-u)+19=4(u-6)-3 | | 3u=4u-11 | | 4x+8*2x-3=180 | | 86=16x-10 | | (0.1x-22)=(0.3x-54) | | 4-(2x+4)=-2x+4 | | .1/2x+5=x | | 2/6+x=4/6 | | 6/10+m=8/10 | | 246=-w+146 | | 246=-w+1146 | | 18=6b-12 | | 10d+5=-10 | | 3e-2=E+10 | | 91=7g | | (x+20)+(3x-18)=180 | | 10b=3b+7b |