7/8x-1/2=3/10x+5

Simple and best practice solution for 7/8x-1/2=3/10x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/8x-1/2=3/10x+5 equation:



7/8x-1/2=3/10x+5
We move all terms to the left:
7/8x-1/2-(3/10x+5)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 10x+5)!=0
x∈R
We get rid of parentheses
7/8x-3/10x-5-1/2=0
We calculate fractions
(-80x^2)/320x^2+280x/320x^2+(-96x)/320x^2-5=0
We multiply all the terms by the denominator
(-80x^2)+280x+(-96x)-5*320x^2=0
Wy multiply elements
(-80x^2)-1600x^2+280x+(-96x)=0
We get rid of parentheses
-80x^2-1600x^2+280x-96x=0
We add all the numbers together, and all the variables
-1680x^2+184x=0
a = -1680; b = 184; c = 0;
Δ = b2-4ac
Δ = 1842-4·(-1680)·0
Δ = 33856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{33856}=184$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(184)-184}{2*-1680}=\frac{-368}{-3360} =23/210 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(184)+184}{2*-1680}=\frac{0}{-3360} =0 $

See similar equations:

| -5x-6-2x=-83 | | b-(-7)/3=3 | | 4/3+(3+x)/3=x | | 5(-x-6)=25 | | 9+x+3x=33 | | 4R+5=6x-7 | | 7-5x=3x-9 | | a2+4=12 | | -2(z+6)=-10 | | 6-3(2p-8)=52 | | 38=2x+3x+3 | | 39x-7=5x+5 | | 14.6=-7.3n | | 4(2y+1)=2(y-3) | | -10q+8=7-10q | | 35+55x=500x | | 41=6x+5x-3 | | 35+5.0x=54 | | 3+8b=6b+11 | | 6a+42+102=180 | | 5(4w+8)+4=104 | | 8+2x+5x=-20 | | 11-49=5a | | 10)2(4z-2)=44 | | 52=5.0x=35 | | -2x-7=-4x+7 | | -1x=4x^2-6 | | -4(2x+3)-4=-3x-(x-8) | | 32x51=51 | | 9s+88+47=180 | | 7x-6=2x+34 | | -6(-7+b)=-42 |

Equations solver categories