7/4y+16=9/7y-10

Simple and best practice solution for 7/4y+16=9/7y-10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/4y+16=9/7y-10 equation:



7/4y+16=9/7y-10
We move all terms to the left:
7/4y+16-(9/7y-10)=0
Domain of the equation: 4y!=0
y!=0/4
y!=0
y∈R
Domain of the equation: 7y-10)!=0
y∈R
We get rid of parentheses
7/4y-9/7y+10+16=0
We calculate fractions
49y/28y^2+(-36y)/28y^2+10+16=0
We add all the numbers together, and all the variables
49y/28y^2+(-36y)/28y^2+26=0
We multiply all the terms by the denominator
49y+(-36y)+26*28y^2=0
Wy multiply elements
728y^2+49y+(-36y)=0
We get rid of parentheses
728y^2+49y-36y=0
We add all the numbers together, and all the variables
728y^2+13y=0
a = 728; b = 13; c = 0;
Δ = b2-4ac
Δ = 132-4·728·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{169}=13$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-13}{2*728}=\frac{-26}{1456} =-1/56 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+13}{2*728}=\frac{0}{1456} =0 $

See similar equations:

| 6x8=6x(+) | | 8(m+5)=-5m+27 | | x²+625-5000=0 | | x²-116-245=0 | | (15x+5)+(6x+6)=80 | | (r-8)(6r-5)=0 | | (x+21)°=102° | | 1/7z+8=12 | | k(9k-2)=0 | | x+3÷-2=8 | | x=0.05^-2 | | 5x-1+3x=7 | | x+8=(x/3)+8 | | (c-2)(7c-5)=0 | | 4+4b=-12 | | 2+4/5=-7+2/5y | | (g-8)(5g+1)=0 | | 5-x^2=-2x+6 | | -28+8x=7x-7-2x | | y(6y-7)=0 | | 4^x=23 | | 6(3x-5)=63 | | 12/45=k/20 | | 105(a+4/3-a/7)=105(a+7/5) | | 12/45=20/k | | (14x-25)+129=180 | | 7m-2=m+10 | | 6z=7=2z-2 | | (w+4)(4w+1)=0 | | (3x-13)+(2x+4)+64=180 | | 5x+25+90=180 | | 4(10+7x)=12 |

Equations solver categories