7/3x-2=11/2x+5

Simple and best practice solution for 7/3x-2=11/2x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/3x-2=11/2x+5 equation:



7/3x-2=11/2x+5
We move all terms to the left:
7/3x-2-(11/2x+5)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 2x+5)!=0
x∈R
We get rid of parentheses
7/3x-11/2x-5-2=0
We calculate fractions
14x/6x^2+(-33x)/6x^2-5-2=0
We add all the numbers together, and all the variables
14x/6x^2+(-33x)/6x^2-7=0
We multiply all the terms by the denominator
14x+(-33x)-7*6x^2=0
Wy multiply elements
-42x^2+14x+(-33x)=0
We get rid of parentheses
-42x^2+14x-33x=0
We add all the numbers together, and all the variables
-42x^2-19x=0
a = -42; b = -19; c = 0;
Δ = b2-4ac
Δ = -192-4·(-42)·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{361}=19$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-19}{2*-42}=\frac{0}{-84} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+19}{2*-42}=\frac{38}{-84} =-19/42 $

See similar equations:

| 4-2(x+8)=10 | | 12(x-1)=8(x+8) | | 17x+8+42=12x+4 | | 6w+24=-8(w+4) | | y+1=2(y-3)-3(y+1) | | -288=8(4-5b) | | 2x−1=7x+44 | | -5+7x=-68 | | -118=7x+5(-4x-8) | | 7x+2(-3x+21)=47 | | t-1=- | | x=9+9*45 | | -2(6+6x)=48 | | 5y-4y=4y-5 | | 25=7=+r | | 7(-3-5x)=-231 | | 2(3x+1)-5x=7/2-2(2x+7) | | (11x−37)+(5x+59)=54 | | 2520=180×(n-2) | | 80+3x=80+2x | | 4m/5-2m/5=4 | | 9^2+x^2=28^2 | | 80+3x=80+2x=215 | | 2(m-10)8=8 | | x+2x-7=5 | | 3a+9=59 | | 2+(3x-4)=20-(2x+3)+(3x+6) | | 56=8-6x | | -5-6x=43 | | -104=-6(n+8)-8 | | 15-5p-6=8 | | 2p÷3=18 |

Equations solver categories