7+0.32y=3/5y

Simple and best practice solution for 7+0.32y=3/5y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7+0.32y=3/5y equation:



7+0.32y=3/5y
We move all terms to the left:
7+0.32y-(3/5y)=0
Domain of the equation: 5y)!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
0.32y-(+3/5y)+7=0
We get rid of parentheses
0.32y-3/5y+7=0
We multiply all the terms by the denominator
(0.32y)*5y+7*5y-3=0
We add all the numbers together, and all the variables
(+0.32y)*5y+7*5y-3=0
We multiply parentheses
0y^2+7*5y-3=0
Wy multiply elements
0y^2+35y-3=0
We add all the numbers together, and all the variables
y^2+35y-3=0
a = 1; b = 35; c = -3;
Δ = b2-4ac
Δ = 352-4·1·(-3)
Δ = 1237
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-\sqrt{1237}}{2*1}=\frac{-35-\sqrt{1237}}{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+\sqrt{1237}}{2*1}=\frac{-35+\sqrt{1237}}{2} $

See similar equations:

| y-0.32y=0.68y | | 4(x+-5)=3(x+5) | | −(−3+m)=−4 | | 2)−(−3+m)=−4 | | m2/3=176.3333 | | 7b-2/5=5b-7/5 | | 4(x+-5)=8(x+5) | | 10p2=1210 | | 2x+12=-6(x+6) | | m2-10=141.29 | | 3^2x-3^x+1=-2 | | X²+x=5 | | 3/m=15/90 | | l2+9=34 | | X-7=-2x-4 | | x+x*0.2=20000 | | 70=4x+1+8x-3 | | 4x÷5x+65=8÷11 | | -14y3-11y2-2y=0 | | 3000000/23000000=(x/300000)^0.6 | | 4x÷5x+65=8÷12 | | W^3-4w^2=32w | | 12b+b^2+27=0 | | 0.875x=9 | | 5-3x=6x-2 | | 24v^2=3v | | 40w+120=700 | | 425x=25 | | 14+x=73 | | y+8/9=1/9 | | 5x+14-7x=-12 | | x+x*0.2=1474 |

Equations solver categories