7(x-7)4x=-2(x+5)

Simple and best practice solution for 7(x-7)4x=-2(x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7(x-7)4x=-2(x+5) equation:



7(x-7)4x=-2(x+5)
We move all terms to the left:
7(x-7)4x-(-2(x+5))=0
We multiply parentheses
28x^2-196x-(-2(x+5))=0
We calculate terms in parentheses: -(-2(x+5)), so:
-2(x+5)
We multiply parentheses
-2x-10
Back to the equation:
-(-2x-10)
We get rid of parentheses
28x^2-196x+2x+10=0
We add all the numbers together, and all the variables
28x^2-194x+10=0
a = 28; b = -194; c = +10;
Δ = b2-4ac
Δ = -1942-4·28·10
Δ = 36516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{36516}=\sqrt{4*9129}=\sqrt{4}*\sqrt{9129}=2\sqrt{9129}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-194)-2\sqrt{9129}}{2*28}=\frac{194-2\sqrt{9129}}{56} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-194)+2\sqrt{9129}}{2*28}=\frac{194+2\sqrt{9129}}{56} $

See similar equations:

| 4n=7n-2 | | 8(4-x)+x=-6(3+x) | | 4+x/7=20+10 | | -16=-u-7u | | -4y^2+8y+12=0 | | 16x^2-24x-625=0 | | 7a-15=2a+10 | | -x+46=76-2x | | Y=-A(x-13.5)^2+10 | | 6=-a(1.5-13.5)^2+10 | | 3/2+x=5 | | 2t-6=6t-30 | | (0.5x-4)-(1.5x+2.3)=0 | | (0.5x-4)-(1.5x+2.3=0 | | P=2000-q÷-5 | | 7p-8=2p+22 | | 2.5x+3.5x=6 | | 5(2x-9)-5=5(x-3)+10 | | x+2/3+5=17 | | 3x+4=5(x-2 | | 40=8(1+r) | | 65=6.5x | | C=80+20n | | C=20+80n | | A=110m-15 | | 3x24-4x+36=0 | | A=110+15m | | 5x²=22 | | A=110-15m | | -4x^2+58x-100=0 | | r—14=23 | | x*2+x/2=12000 |

Equations solver categories