If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7(1/8)x-3/4=20
We move all terms to the left:
7(1/8)x-3/4-(20)=0
Domain of the equation: 8)x!=0determiningTheFunctionDomain 7(1/8)x-20-3/4=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
7(+1/8)x-20-3/4=0
We multiply parentheses
7x^2-20-3/4=0
We multiply all the terms by the denominator
7x^2*4-3-20*4=0
We add all the numbers together, and all the variables
7x^2*4-83=0
Wy multiply elements
28x^2-83=0
a = 28; b = 0; c = -83;
Δ = b2-4ac
Δ = 02-4·28·(-83)
Δ = 9296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9296}=\sqrt{16*581}=\sqrt{16}*\sqrt{581}=4\sqrt{581}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{581}}{2*28}=\frac{0-4\sqrt{581}}{56} =-\frac{4\sqrt{581}}{56} =-\frac{\sqrt{581}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{581}}{2*28}=\frac{0+4\sqrt{581}}{56} =\frac{4\sqrt{581}}{56} =\frac{\sqrt{581}}{14} $
| 1,2(x+1)-3=9-(30,3x) | | 5n-14=1 | | 1.6x-17=23 | | n(n-1)=100 | | 12.18+0.08x=12.68-0.07x | | 9n-3n=6(2n-1) | | 3x+4.5=150 | | a+2a=3,6 | | 6(x-2)+x=10x-30 | | 600=30x+150 | | 15.09+0.12x=15.84-0.15x | | y4×6×2-7=7 | | 8(7-z)=32 | | X-6x+10x=20 | | 1+8s=57 | | x+(1/2x+3)=21 | | 6(v-1)=7v+1-4(-2v-2) | | 2x+68=4x-30 | | x2-19x+28=0 | | 2y/6y-5y+3*4-4=0 | | 28-6x=4x+58 | | -3(v+5)=7v-9+3(2v+4) | | 8y+4y=15-9 | | -2(6w-3)+8w=4(w+2) | | -3(-6x+8)-2x=2(x-8)-4 | | 2y+(4/6y)+3*4-5y=0 | | 2y+4/6y+3*4-5y=0 | | T(n)=-3n-3 | | х+0,03o+60=1000 | | -3(y+7)=8y+1 | | 1,03x-70=0 | | 4x-16=-4(x+2) |