2y+(4/6y)+3*4-5y=0

Simple and best practice solution for 2y+(4/6y)+3*4-5y=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2y+(4/6y)+3*4-5y=0 equation:



2y+(4/6y)+3*4-5y=0
Domain of the equation: 6y)!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
2y+(+4/6y)-5y+3*4=0
We add all the numbers together, and all the variables
-3y+(+4/6y)+12=0
We get rid of parentheses
-3y+4/6y+12=0
We multiply all the terms by the denominator
-3y*6y+12*6y+4=0
Wy multiply elements
-18y^2+72y+4=0
a = -18; b = 72; c = +4;
Δ = b2-4ac
Δ = 722-4·(-18)·4
Δ = 5472
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5472}=\sqrt{144*38}=\sqrt{144}*\sqrt{38}=12\sqrt{38}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-12\sqrt{38}}{2*-18}=\frac{-72-12\sqrt{38}}{-36} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+12\sqrt{38}}{2*-18}=\frac{-72+12\sqrt{38}}{-36} $

See similar equations:

| 2y+4/6y+3*4-5y=0 | | T(n)=-3n-3 | | х+0,03o+60=1000 | | -3(y+7)=8y+1 | | 1,03x-70=0 | | 4x-16=-4(x+2) | | 3t+6=12. | | -3/4=2n | | 2(x-4)=7x-43 | | 2^x-2^x+2=-2^4 | | 1,03x-70=0. | | 1,03u-40=0. | | 1,03x-40=0 | | 5(w-7)+2w=-21 | | 7+6=x-19 | | 15=6(u+6)-3u | | -3/4=5/3n-n | | 3x+20/4-6x/4=20 | | (3x+2)°=(5x-4)° | | 1j÷4+6=10 | | j÷4+6=10 | | 10a^2=49 | | x18=3 | | x8=3 | | 5x-7=-6(x+4)-5 | | 28x-7=-7+7(x+18) | | x+0.03x+60=100 | | b(b=17)=0 | | 10=4.9×a^2 | | {(4/2)^-3}*{(4/5)^-5}=(4/3)^3x | | 10=4.9*a^2 | | 25000=(4)^3x |

Equations solver categories