If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-4x-3=0
a = 6; b = -4; c = -3;
Δ = b2-4ac
Δ = -42-4·6·(-3)
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{22}}{2*6}=\frac{4-2\sqrt{22}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{22}}{2*6}=\frac{4+2\sqrt{22}}{12} $
| 3n-726= | | 5x+x²1005x-17=-x+7 | | 71a+-93=49 | | 18=s+8 | | 6+9=z+13 | | 6(x-6)+4=8(1-x) | | 8.4-((x/60)/((200-x)/50))=0 | | 8.4=(x/60)/((200-x)/50) | | 2b=20. | | 4w(w+3)=9+12w | | y/4=60 | | 12x2-13x-7175=0 | | 3(-6b+1)=-141 | | 0-4y=28 | | x+0.2-0.2=0.8-0.2 | | 16x2+8x+1=0 | | 1/2*7h=28 | | 90+3x=12x | | (2x+1)(x-1)+x2=3(x-1)(x+2)-3 | | 5=7-2(3x1)+4x | | 4d+1/d+9=-3/2 | | 65+11x-17=180+ | | 8x=2.48 | | 3(+5)=x+21 | | 2x+6x=15+3x | | 15=-1/6n-8 | | -7-7x-2/5x=298/5 | | 21/3w+15=7+1/3(w+6) | | 3(x+8)=-12 | | 2/3x-60=90 | | q-1.8+1.8=14+1.8 | | x^2+51x+162=0 |