If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-13x-7175=0
a = 12; b = -13; c = -7175;
Δ = b2-4ac
Δ = -132-4·12·(-7175)
Δ = 344569
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{344569}=587$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-587}{2*12}=\frac{-574}{24} =-23+11/12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+587}{2*12}=\frac{600}{24} =25 $
| 3(-6b+1)=-141 | | 0-4y=28 | | x+0.2-0.2=0.8-0.2 | | 16x2+8x+1=0 | | 1/2*7h=28 | | 90+3x=12x | | (2x+1)(x-1)+x2=3(x-1)(x+2)-3 | | 5=7-2(3x1)+4x | | 4d+1/d+9=-3/2 | | 65+11x-17=180+ | | 8x=2.48 | | 3(+5)=x+21 | | 2x+6x=15+3x | | 15=-1/6n-8 | | -7-7x-2/5x=298/5 | | 21/3w+15=7+1/3(w+6) | | 3(x+8)=-12 | | 2/3x-60=90 | | q-1.8+1.8=14+1.8 | | x^2+51x+162=0 | | 32x=7x+2 | | 5(x+7)=72 | | 2-4y=28 | | (X-1)(x+5)=(x)2+4x-2 | | 9/3+x=7 | | 4y+16=67 | | 47=n+40 | | w+8=8 | | 1932-1872=6p | | -7(x)=3 | | x2-6x+9=256 | | (7x-8)-9=3(x+) |