If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-20x-5=0
a = 6; b = -20; c = -5;
Δ = b2-4ac
Δ = -202-4·6·(-5)
Δ = 520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{520}=\sqrt{4*130}=\sqrt{4}*\sqrt{130}=2\sqrt{130}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{130}}{2*6}=\frac{20-2\sqrt{130}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{130}}{2*6}=\frac{20+2\sqrt{130}}{12} $
| 23(3x + 9) = −2(2x + 6) | | 10–2k=4 | | 7(13u+1)+5u=14u+7 | | -n-16+4=53 | | –4−4s=–8s | | x+3.9=-1.1 | | 17w+12+3w=5w+12 | | 3(y-5)+4(y+1)=5(2y-1) | | -3-6(-4x+6)=-111 | | x+1+9x-31=180 | | 4(3x-2)=-28 | | 1/5(8z-5)=-9/5z | | 17=7+4(2.2d-8.5) | | 13=-9p-9+10p | | b/5=3.6 | | 2x+23=3x-30 | | -9(r-8)=-8r-2 | | 8(x-2)=+6 | | 6.2g+4=3.2g+13 | | r8=7 | | 12(10.5)-4y=18 | | 5.89+2h=9.89 | | -4(10.5)+y=6 | | 2(14q+10)+9q=20 | | 5d+28=4d | | 3(x-5=8x-15-5x | | 1/2(8x+4)+2x=74 | | 100x-10=11 | | 5u-2=6u+6 | | 11=-x+8 | | 1/3(6x+12)-2(x-17)=19 | | 2-2m=-7=+3(m-7) |