If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+5x=6
We move all terms to the left:
6x^2+5x-(6)=0
a = 6; b = 5; c = -6;
Δ = b2-4ac
Δ = 52-4·6·(-6)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-13}{2*6}=\frac{-18}{12} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+13}{2*6}=\frac{8}{12} =2/3 $
| 4x2=4x=1=0 | | -35-4n=-7 | | x^2+5x+6=x^2+19x+34 | | x2+5x+14=0 | | x2+6x+9-10=0 | | 6k=2k*48 | | 60-139r=12r^2 | | 9t^2-2t-1/3=0 | | -4x^2+6x^2-12x^2+43+94=0 | | 5x+2=3x=7 | | -5x2+2=7x | | -5x=2=7x | | 4p^2-p-9=0 | | 4n^2-6=-14 | | 4-2y=y+12 | | 8n2+4n-16=n2 | | 2-6n=12 | | (4x-3)(2/3x+5)=0 | | D=6x9 | | 5(x+3)+3(x-2)=41 | | 0.08x=50 | | (9x+184)-(-14)=(7x+156)-(-14) | | 3x+3-2x=8+2x+1-3x | | (x-4)(6x^2+2x-4)+(3x+10)^2=(4x^2-x^2+5x+22) | | 8(4w+5)=3 | | 2+(-3x)=(-2)+(-x) | | x/4-(-2)=-5 | | 4(x+3)-46=2(x-5) | | 7(2x-2)=4(3x+2) | | Y=200+12x | | -y^2+20y-100=0 | | 15+9h=-5(3h+6) |