If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+6x+9-10=0
We add all the numbers together, and all the variables
x^2+6x-1=0
a = 1; b = 6; c = -1;
Δ = b2-4ac
Δ = 62-4·1·(-1)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{10}}{2*1}=\frac{-6-2\sqrt{10}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{10}}{2*1}=\frac{-6+2\sqrt{10}}{2} $
| 6k=2k*48 | | 60-139r=12r^2 | | 9t^2-2t-1/3=0 | | -4x^2+6x^2-12x^2+43+94=0 | | 5x+2=3x=7 | | -5x2+2=7x | | -5x=2=7x | | 4p^2-p-9=0 | | 4n^2-6=-14 | | 4-2y=y+12 | | 8n2+4n-16=n2 | | 2-6n=12 | | (4x-3)(2/3x+5)=0 | | D=6x9 | | 5(x+3)+3(x-2)=41 | | 0.08x=50 | | (9x+184)-(-14)=(7x+156)-(-14) | | 3x+3-2x=8+2x+1-3x | | (x-4)(6x^2+2x-4)+(3x+10)^2=(4x^2-x^2+5x+22) | | 8(4w+5)=3 | | 2+(-3x)=(-2)+(-x) | | x/4-(-2)=-5 | | 4(x+3)-46=2(x-5) | | 7(2x-2)=4(3x+2) | | Y=200+12x | | -y^2+20y-100=0 | | 15+9h=-5(3h+6) | | x/2+1.2=-1.4 | | (x+4)+(-5x-6)=-31 | | (x+4)+(-6x-6)=-30 | | 10(s-3)=86 | | (x+4)+(-5x-7)=-30 |