6x-5-5x+3=4(1+1/4x)

Simple and best practice solution for 6x-5-5x+3=4(1+1/4x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x-5-5x+3=4(1+1/4x) equation:



6x-5-5x+3=4(1+1/4x)
We move all terms to the left:
6x-5-5x+3-(4(1+1/4x))=0
Domain of the equation: 4x))!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
6x-5x-(4(1/4x+1))-5+3=0
We add all the numbers together, and all the variables
x-(4(1/4x+1))-2=0
We multiply all the terms by the denominator
x*4x-2*4x+1))-(4(1+1))=0
We add all the numbers together, and all the variables
x*4x-2*4x+1))-(42)=0
We add all the numbers together, and all the variables
x*4x-2*4x=0
Wy multiply elements
4x^2-8x=0
a = 4; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·4·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*4}=\frac{0}{8} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*4}=\frac{16}{8} =2 $

See similar equations:

| x^2+3x-78=0 | | -8v-12v-18=-62 | | 8v-12-18=-62 | | (21-x)/4=x/8 | | 3u=2u=20 | | A=6(15r-14) | | (3x-8)^4*(x-1)^3*(x+1)=0 | | 8x+52=32 | | -8+2w=-14 | | 8x-20=-2x | | 2(x-2)-2x=3x-(x-2) | | 4^(2n-3)=3^(n) | | 5/(n+6)=10/n | | C=5z+20 | | 2z-11+2z-14+3z=180 | | 5x-18-8x-5=180 | | -24=4(-4)-6x | | 2u+2u-6+u+20=180 | | 73+73+x=180 | | 17=6c-11 | | 6.3w-6=-1.5 | | p-19+2p-20+33=180 | | t+15+2t-17+2t=180 | | -3(2x-5)-4=2(-4x-6) | | x^2-35=3x | | x+4=20-x-x=4-3 | | 4x^2-2x=3=0 | | t+15+2t–17+2t=180 | | -3x(2x-5)-4=2(-4x-6) | | 4(y-8)=-16 | | 41+44p+26+26p+45=180 | | 2g-2/2=-46 |

Equations solver categories