-3x(2x-5)-4=2(-4x-6)

Simple and best practice solution for -3x(2x-5)-4=2(-4x-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3x(2x-5)-4=2(-4x-6) equation:



-3x(2x-5)-4=2(-4x-6)
We move all terms to the left:
-3x(2x-5)-4-(2(-4x-6))=0
We multiply parentheses
-6x^2+15x-(2(-4x-6))-4=0
We calculate terms in parentheses: -(2(-4x-6)), so:
2(-4x-6)
We multiply parentheses
-8x-12
Back to the equation:
-(-8x-12)
We get rid of parentheses
-6x^2+15x+8x+12-4=0
We add all the numbers together, and all the variables
-6x^2+23x+8=0
a = -6; b = 23; c = +8;
Δ = b2-4ac
Δ = 232-4·(-6)·8
Δ = 721
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{721}}{2*-6}=\frac{-23-\sqrt{721}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{721}}{2*-6}=\frac{-23+\sqrt{721}}{-12} $

See similar equations:

| 4(y-8)=-16 | | 41+44p+26+26p+45=180 | | 2g-2/2=-46 | | 15/2x=15/4 | | -16x^2+96x-12=120 | | 44+44+x=180 | | 3s+49+5s-46=180 | | 17=6c+-21 | | 47+47+x=180 | | (1/5)^x-7=25^3x | | 3z+1+3z+1+4z-1+4z-1=70 | | 0.04=0.4(0.02)+x(0.05) | | 0=10x^2+8x+7 | | 30+5x-6+2x-17=180 | | 59+59+x=180 | | 4x-21=7x+24 | | 4u-11+76+5u-6=180 | | 8x^2+12x-11=6+x | | 58+64+x=180 | | .-13=2b-b-10 | | 9r-3=6 | | 10x-5=2x+5 | | 9j+4=13)-6 | | 13a-45=36+4a | | 74+32+x=180 | | 25-0.5x=16.5 | | 57+66+a=180 | | 76.50/0.45=c | | 5y+2+4y=202 | | 7w-2=26 | | -2x+7=x+9 | | 56+68+a=180 |

Equations solver categories