If it's not what You are looking for type in the equation solver your own equation and let us solve it.
63x/(13-17x)-6x=63
We move all terms to the left:
63x/(13-17x)-6x-(63)=0
Domain of the equation: (13-17x)!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
-17x!=-13
x!=-13/-17
x!=13/17
x∈R
63x/(-17x+13)-6x-63=0
We add all the numbers together, and all the variables
-6x+63x/(-17x+13)-63=0
We multiply all the terms by the denominator
-6x*(-17x+13)+63x-63*(-17x+13)=0
We add all the numbers together, and all the variables
63x-6x*(-17x+13)-63*(-17x+13)=0
We multiply parentheses
102x^2+63x-78x+1071x-819=0
We add all the numbers together, and all the variables
102x^2+1056x-819=0
a = 102; b = 1056; c = -819;
Δ = b2-4ac
Δ = 10562-4·102·(-819)
Δ = 1449288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1449288}=\sqrt{36*40258}=\sqrt{36}*\sqrt{40258}=6\sqrt{40258}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1056)-6\sqrt{40258}}{2*102}=\frac{-1056-6\sqrt{40258}}{204} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1056)+6\sqrt{40258}}{2*102}=\frac{-1056+6\sqrt{40258}}{204} $
| 5.5x+0.3x=30 | | ((3x+6)/4)=3 | | 25+x2=0 | | 4x-2+10x-4+x+11=180 | | (r+3)²-(r+3)-2=0 | | 3^5x=27^(2x-4) | | 10‐3x=40 | | 1/3x2-1/9x=0 | | 1/3x^2-1/9x=0 | | -64x2+0,25=0 | | 256=z² | | x-5=0x-12=0 | | -x2+6x+1=0 | | 10p+13p+9p=353 | | b/9=-63 | | 9x+10=5+x | | (2x-1)2-(x+5)2=0 | | (9x+4)=13 | | 1+1=x+19/20 | | 6x^2-12=4x^2+38 | | 7y-19+3y=2y-12y | | 80=(x+25) | | (4x-1)(x-4)=(3x+2)(x-7) | | (1/2x-3)(x+2)=(5-x)(6-x) | | (x+5)2=5x(x-1) | | (x-3)(x+5)=(2x+3)(x-4) | | (2x+-20)=(x-20) | | 3(2x-5)+2(x+2)=5 | | 19(2x-3)+3(x-2)=3(2x-13)+11 | | 4x=3x-2,2 | | 8x=7x+4,5 | | 4(13x-5)-3(x-2)=2(2x+3)+70 |